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$ Cavendish Laboratory, Cambridge University, Cambridge CB2 lTT,  UK 

Received 23 August 1976 

AbstrPct. Using the variational block-spin approximation of Kadanoff we construct a 
remornalization group recursion relation suitable for two-layered king systems. We 
describe the critical behaviour of the Ashkin-Teller model in some detail. 

The critical behaviour of two infinite coupled two-dimensional Ising systems is of 
considerable theoretical interest. The interaction between the systems modifies their 
separate critical behaviour substantially and in a non-perturbative manner. In this letter 
we apply a renormalization group block-spin technique (Kadanoff 1975) to describe the 
critical behaviour of the combined system. 

We restrict our considerations to the interactions within the unit cell shown in figure 
1. The Hamiltonian of the system then becomes 

where ai, si = f 1 are the two king spins at the site i. The following cases are of interest. 
(A) JI2 = J4 = 0. The two systems decouple. There are two critical temperatures (if 

J1 #Jz) and the model is entirely solved in terms of Onsager's solution of the king 
model (Oitmaa and Enting 1975). 

( B )  J12 = 0 ;  J4 # 0.  This model is equivalent to the Ashkin-Teller (AT) model (Fan 
1972). A certain amount is known about the shape of the critical surface (see figure 2) 
(Wu and Lin 1974) by virtue of the dual transformation between the AT and the 
staggered %vertex models (Mittag and Stephen 1971, Wegner 1972). In particular, the 

Figure 1. The unit cell of the two-layered king system, having nearest-neighbour interac- 
tions. J1 in layer 1, J2 in layer 2, JI2 between layers, and a 4-spin interaction, J4, coupling 
two nearest-neighbour pairs. 
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Figre 2. The critical surface of the Ashkin-Teller model, as conjectured by Wu and Lin. 
The point A represents the fixed point of the Potts model, and B, the fixed point of two 
decoupled king systems. The symmetric fixed point of the 8-vertex model is represented by 
C. 

model with J1 = J2 coincides with a special case of the exactly soluble 8-vertex model 
(Baxter 1972). Although the equivalence of the critical exponents cannot be deduced 
from the duality relation, this does suggest that the AT model may possess continuously 
varying exponents. (In the language of the renormalization group this requires a line of 
fixed points.) 

(C) J1 = J2 = J4; JI2 = 0. This particular case of the AT model is the 4-state Potts 
model (Potts 1952) for which the transition temperature is known but not the critical 
exponents. This model has an additional symmetry under the transformation ai + aisi7 
si + si. 

( D )  The model with JI2 as the only non-zero inter-layer coupling has been partially 
investigated by means of a high temperature expansion by Oitmaa and Enting (1975). 

The renormalization group has provided considerable physical insight into critical 
phenomena (see review by Wilson and Kogut 1974) as well as a rather accurate 
approximation procedure for obtaining critical exponents. In particular the variational 
block-spin procedure of Kadanoff (1975) is remarkably simple to implement and has 
provided exponents which are very close to the exact ones for the ordinary Ising model. 
We have extended the procedure of Kadanoff to the two-layered system. Our funda- 
mental bbck is thus the two-layered square of figure l .  We replace each layer of the old 
lattice (with spins ai, si respectively) by a new square lattice of Ising spins, pi and ti, 
having twice the old lattice spacing, in such a manner that the partition function 2, is 
unchanged 

Z =  exp(-H(a,s)) 
h * S i = * l l  

= C exp(-H'(p, t ) )  
Gc#,O=*ll 

exp ( - H ( a ,  s ) + p l p i  Z,q +p2ti Zpj +p3piti  Zpjsj) = c  ea+b+C +e-a-b+c + e ~ - b - c  + e- a+b-c  
UirWIfi 

where a =p12aj; b =p2Zsj; c = p 3 Z o p j  and the sum runs over the four old spins 
surrounding each of the new spins. p l ,  p2, p 3  are arbitrary parameters. Equation (2) 
defines the effective Hamiltonian H'(p7 t) in terms of the Hamiltonian H(a7 s), which 
may be written 

H(m, s) = -1 K,S,(a7 s) 
i 

(3) 
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where the Ki =J i /kT  are a set of coupling constants for the combination of spins 
Si(u, s), The structure of equation (2) is designed to ensure that the symmetries of 
H(u, s) are preserved in H'(p, t) in a manifest manner, which will be of paramount 
importance in subsequent approximations. Although we start with a Hamiltonian 
containing only 2- and 4-spin terms the application of the renormalization transforma- 
tion will lead to a new Hamiltonian H ' h ,  t) containing terms of arbitrarily long range. 
Kadanoff obtains an approximate recursion relation by a procedure that involves 
dropping couplings between primitive cells of the (U, s) lattice in such a manner that the 
resulting approximate free energy is rigorously a lower bound on the exact free energy. 
Thus in our case the set of symmetric spin functions Si involve only the eight spins within 
the unit cell. The thermodynamic properties of the system are determined by the 
average values of these spin functions, for example, the magnetization is proportional to 
(Xi oi). In addition to the usual symmetries we follow Kadanofl in imposing a further 
permutation symmetry (which is equivalent to performing an initial decimation) which 
leaves the Hamiltonian invariant under the interchange of any two sites (ai, si)(aj, si) 
within the unit cell. This then restricts the interaction constants to a set of 34 together 
with a constant term, KO. 

Successive applications of the transformation lead to a fixed point Hamiltonian, 
H* = H*(K*). The free parameters (pl, p 2 ,  p 3 )  are then fixed by maximizing the free 
energy as in a usual variational approach. The critical properties of the system are 
determined by the eigenvalues of the renormalization transformation, linearized about 
the fixed point, the degree of instability of the point being determined by the number of 
eigenvalues greater than one. We refer to Kadanoff's paper for a description of the 
method. More details will be presented in a forthcoming paper. For the moment we 
describe the main results. 

(1) When J12 = J4 = 0 we find two phase transitions. Although this case is somewhat 
trivial we note that we do reproduce the correct crossover exponents with considerable 
accuracy. Taking the critical temperatures to be T,, > T,, we find several regimes. 

( a )  T >  T,,. The high temperature fixed point controls this region and there are no 
relevant eigenvalues (corresponding to the fixed point being stable in all directions). 

( b )  T = TIC. This is controlled by a fixed point having relevant temperature and 
magnetic eigenvalues. (For a description of these see Niemeyer and Van Leeuwen 
1974.) However, since T > T2, the eigenvalues corresponding to J12 couplings are not 
relevant. 

(c) T2,<T< Tlc. We find a magnetic eigenvalue due to lattice 1 being in an 
ordered state. 

( d )  T = T2,. In this case the fixed point has relevant eigenvalues corresponding to 
J12 couplings between the lattices since the spontaneous magnetization of lattice 1 
couples into lattice 2. 

We also find crossover exponents &, &, & corresponding to the critical behaviour 
of the spin functions 

for varying values of the ratio Tlc/TZc. Since the two lattices are decoupled it is possible 
to express these averages as a product of the average values on the two lattices 
separately: 
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and thus their critical behaviour is known. In table 1 we compare the exact and the 
calculated values of the crossover exponents in the two cases Tl,  f Tzc and Tlc = TZc. 
For the case where T,, = TZc we also find a marginal eigenvalue (A = 1) corresponding to 
a J4 coupling, indicating that a line of fixed points exists for models which have a 4-spin 
coupling (namely the 8-vertex model). 

Table 1. The crossover exponents for two decoupled king systems. 

91 9 2  93 
Exponent 

Exact Calculated Exact Calculated Exact Calculated 

Tl,> 3-2, 0.125 0-1247 1 .o 0.9991 0.125 0.1237 
Tl, = T2c 0.25 0.2494 1.125 1.124 1.125 1.124 

( 2 )  J12 = 0 (Ashkin-Teller model). The easiest way to describe the results is with 
reference to figure 2,  the critical surface conjectured by Wu and Lin (1974). The 
weights wi are defined by: 

wi = exp(-E,/kT) (6) 

= 2(J2+J4) €2 = 2(51+54) € 3  = 2(J1 +Jz). (7) 

where 

As T varies from zero to infinity a curve is traced out in the figure from (0, 0,O) to 
(1, 1, 1). The whole figure is embedded in the space of all possible couplings-within 
our approximation, all possible couplings in a unit cell. Under renormalization 
transformation the system is controlled by fixed points in this space which, in general, 
have non-zero values of the 6- and &spin couplings. When J1 = J2 the model has two 
order parameters, the magnetization, M = (ai) = (si) and the polarization, P = (aisi). 
We denote the corresponding critical exponents by pm, 6, and p,, 6, respectively, and 
assume scaling for each set. 

When J1 # Jz we confirm that there are two phase transitions. For J1 = J2 < J4 our 
procedure indicates the presence of a line of fixed points giving critical exponents which 
are continuously dependent on the 4-spin coupling, J4. Strictly speaking, at a fixed 
point, our variational approach requires that the free energy is simultaneously a 
maximum with respect to  p 1 (or p2),  and p 3 .  (By symmetry p l  and p2 are equivalent 
when J1 = J2. )  Figure 3 is a plot of J4 against J1 along curves for which the free energy is 
a maximum with respect to p 1 and p 3  separately. We note that, while in the centre of 
the region the curves are clearly distinct, at either end they are so close that a line of 
fixed points is strongly indicated. Each point on this line is obtained for different values 
of p 1, p 2  and p 3 .  Assuming that the true fixed line lies between the two curves shown in 
figure 3, then as we move along the line from B, the fixed point of two decoupled king 
systems, to A, the fixed point of the Potts model, the value of the 4-spin coupling 
increases from 0 at B to J1 = Jz at A. We find that the exponent 6 ,  always remains close 
to 15, while the values of a and of 6, vary continuously. In table 2 we compare the 
values of the critical exponents at the two points, A and B. Comparison is also made 
with the exact values for the decoupled systems (point B) and a high temperature 
expansion estimate for the Potts model (point A). 
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Figure 3. A plot of J4 against J1 along curves for which the free energy is a maximum with 
respect to p l  (full curve) and p3 (broken curve). 

Table 2. The critical exponents obtained from the renormalization group transformation 
are compared with a high temperature expansion estimate for the Potts model fixed point, 
A, and with the exact values for the fixed point of two decoupled king systems, B. 

A B 

Critical High temperature Exact 
Exponent Calculated estimate Calculated value 

a 0.5009 0.6 f 0.1 0.0017 0 
6, 15.65 15.8 * 0.8 15.040 15 
6, 15.65 15.8 f 0.8 7.021 7 
Bm 0.09005 0.089 f 0.03 0.1246 0.125 
Be 0*09005 0.089 f 0.03 0.2494 0.25 

The value of a in the Potts limit (5, = J2 = J4) is strikingly close to the value apotts = $. 
The 8-vertex model has the same value of a at its symmetric point (K' = K- = A in the 
notation of Kadanoff and Wegner 1971), and, under the dual transformation this point 
transforms into the point labelled C (figure 2). For the Ashkin-Teller model the 
calculation of a at C (5, = J2 = - J4 = 00) involves the use of negative p 3  for which it has 
not yet been possible to obtain any exact results. However, a does appear to become 
negative as this point is approached from B, and may tend to a = -00 at B. This is the 
same as the 8-vertex value at the point K +  = K -  = - A  = co which is mapped into A in 
figure 2. There does, therefore, seem to be a reciprocal relationship between the 
specific heat exponents in the two models. 

The authors wish to thank Professor H N V Temperley and N Jan for helpful discussions 
and acknowledge the Science Research Council for financial support. 
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